SymbolicRegression.jl

Latest releaseDocumentationBuild statusCoverage
versionDevCICoverage Status

Distributed High-Performance symbolic regression in Julia.

Check out PySR for a Python frontend.

Cite this software

Python documentation

Quickstart

Install in Julia with:

using Pkg
Pkg.add("SymbolicRegression")

The heart of this package is the EquationSearch function, which takes a 2D array (shape [features, rows]) and attempts to model a 1D array (shape [rows]) using analytic functional forms.

Run distributed on four processes with:

using SymbolicRegression

X = randn(Float32, 5, 100)
y = 2 * cos.(X[4, :]) + X[1, :] .^ 2 .- 2

options = SymbolicRegression.Options(
    binary_operators=(+, *, /, -),
    unary_operators=(cos, exp),
    npopulations=20
)

hallOfFame = EquationSearch(X, y, niterations=5, options=options, numprocs=4)

Contents