James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, and Skye Wanderman-Milne. JAX: composable transformations of Python+NumPy programs,
2018. URL http://github.com/google/jax.
Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neu-
ral Ordinary Differential Equations. Advances in neural information process-
ing systems, pp. 6571–6583, 2018. URL
http://papers.nips.cc/paper/
7892-neural-ordinary-differential-equations.pdf.
Zhengdao Chen, Jianyu Zhang, Martin Arjovsky, and Léon Bottou. Symplectic recurrent neural
networks. arXiv preprint arXiv:1909.13334, 2019.
Miles Cranmer, Alvaro Sanchez-Gonzalez, Peter Battaglia, Rui Xu, Kyle Cranmer, David Spergel,
and Shirley Ho. Discovering Physical Equations with Graph Networks. forthcoming, 2020.
Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256, 2010.
Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian Neural Networks. In Advances
in Neural Information Processing Systems, pp. 15353–15363, 2019.
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.
Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in Neural Information Processing Systems 25, pp. 1106–1114, 2012.
Michael Lutter, Christian Ritter, and Jan Peters. Deep Lagrangian Networks: Using physics as model
prior for deep learning. arXiv preprint arXiv:1907.04490, 2019.
Matthias Rupp, Alexandre Tkatchenko, Klaus-Robert Müller, and O Anatole Von Lilienfeld. Fast
and accurate modeling of molecular atomization energies with machine learning. Physical review
letters, 108(5):058301, 2012.
Alvaro Sanchez-Gonzalez, Victor Bapst, Kyle Cranmer, and Peter Battaglia. Hamiltonian graph
networks with ode integrators. arXiv preprint arXiv:1909.12790, 2019.
Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2008.
M. Schmidt and H. Lipson. Distilling free-form natural laws from experimental data. science, 324
(5923):81–85, 2009.
Kristof T Schütt, Farhad Arbabzadah, Stefan Chmiela, Klaus R Müller, and Alexandre Tkatchenko.
Quantum-chemical insights from deep tensor neural networks. Nature communications, 8:13890,
2017.
David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without
human knowledge. Nature, 550(7676):354, 2017.
Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural networks.
CoRR, abs/1409.3215, 2014. URL http://arxiv.org/abs/1409.3215.
Peter Toth, Danilo Jimenez Rezende, Andrew Jaegle, Sébastien Racanière, Aleksandar Botev, and
Irina Higgins. Hamiltonian Generative Networks. International Conference on Machine Learning,
2019.
7