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ABSTRACT

Accurate models of the world are built upon notions of its underlying symmetries.
In physics, these symmetries correspond to conservation laws, such as for energy
and momentum. Yet even though neural network models see increasing use in
the physical sciences, they struggle to learn these symmetries. In this paper, we
propose Lagrangian Neural Networks (LNNs), which can parameterize arbitrary
Lagrangians using neural networks. In contrast to models that learn Hamiltonians,
LNNs do not require canonical coordinates, and thus perform well in situations
where canonical momenta are unknown or difficult to compute. Unlike previous
approaches, our method does not restrict the functional form of learned energies
and will produce energy-conserving models for a variety of tasks. We test our
approach on a double pendulum and a relativistic particle, demonstrating energy
conservation where a baseline approach incurs dissipation and modeling relativity
without canonical coordinates where a Hamiltonian approach fails. Finally, we
show how this model can be applied to graphs and continuous systems using a
Lagrangian Graph Network, and demonstrate it on the 1D wave equation.

Figure 1: Physicists use Lagrangians to describe the dynamics of physical systems like the double
pendulum (black). Neural networks struggle to model these dynamics over long time periods due to
their inability to conserve energy (red). In this paper, we show how to learn arbitrary Lagrangians
with neural networks, inducing a strong physical prior on the learned dynamics (blue).
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1 INTRODUCTION

Neural networks excel at finding patterns in noisy and high-dimensional data. They can perform well
on tasks such as image classification (Krizhevsky et al., 2012), language translation (Sutskever et al.,
2014), and game playing (Silver et al., 2017). Part of their success is rooted in "deep priors" which
include hard-coded translation invariances (e.g., convolutional filters), clever architectural choices
(e.g., self-attention layers), and well-conditioned optimization landscapes (e.g., batch normalization).
Yet, in spite of their ability to compete with humans on challenging tasks, these models lack many
basic intuitions about the dynamics of the physical world. Whereas a human can quickly deduce that
a ball thrown upward will return to their hand at roughly the same velocity, a neural network may
never grasp this abstraction, even after seeing thousands of examples (Bakhtin et al., 2019).

The basic problem with neural network models is that they struggle to learn basic symmetries and
conservation laws. One solution to this problem is to design neural networks that can learn arbitrary
conservation laws. This was the core motivation behind Hamiltonian Neural Networks by Greydanus
et al. (2019) and Hamiltonian Generative Networks by Toth et al. (2019). These are both types of
differential equations modeled by neural networks, or “Neural ODEs,” which were studied extensively
in Chen et al. (2018).

Yet while these models were able to learn effective conservation laws, the Hamiltonian formalism
requires that the coordinates of the system be “canonical.” In order to be canonical, the input
coordinates (q, p) to the model should obey a strict set of rules given by the Poisson bracket relations:

pi ≡
∂L
∂q̇i
⇐⇒ {qi, qj} = 0 {pi, pj} = 0 {qi, pj} = δij , (1)

where {f, g} =
∑
i

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
,

where q̇ indicates a time derivative. The problem is that many datasets have dynamical coordinates
that do not satisfy this constraint: pi is not simply q̇i ×mass in many cases. A promising alternative is
to learn the Lagrangian of the system instead. Like Hamiltonians, Lagrangians enforce conservation
of total energy, but unlike Hamiltonians, they can do so using arbitrary coordinates.

In this paper, we show how to learn Lagrangians using neural networks. We demonstrate that they can
model complex physical systems which Hamiltonian Neural Networks (HNNs) fail to model while
outperforming a baseline neural network in energy conservation. We discuss our work in the context
of “Deep Lagrangian Networks,” (DeLaNs) described in Lutter et al. (2019), a closely related method
for learning Lagrangians. Unlike our work, DeLaNs focus on continuous control applications and
only model rigid body dynamics. Our model is more general in that it does not restrict the functional
form of the Lagrangian. We also show how our model can be applied to continuous systems and
graphs using a Lagrangian Graph Network in section 5.

Table 1: An overview of neural network based models for physical dynamics. Lagrangian Neural
Networks combine many desirable properties. DeLaNs explicitly restrict the learned kinetic energy,
and HNNs implicitly do as well by requiring a definition of the canonical momenta.

Neural net Neural ODE HNN DeLaN LNN (ours)

Can model dynamical systems X X X X X
Learns differential equations X X X X
Learns exact conservation laws X X X
Learns from arbitrary coords. X X X X
Learns arbitrary Lagrangians X

2 THEORY

Lagrangians. The Lagrangian formalism models a classical physics system with coordinates xt =
(q, q̇) that begin in one state x0 and end up in another state x1. There are many paths that these
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coordinates might take as they pass from x0 to x1, and we associate each of these paths with a scalar
value called “the action.” Lagrangian mechanics tells us that if we let the action be the functional:

S =

∫ t1

t0

T (qt, q̇t)− V (qt, q̇t) dt, (2)

where T is kinetic energy and V is potential energy, then there is only one path that the physical
system will take, and that path is the stationary (e.g., minimum) value of S. In order to enforce the
requirement that S be stationary, i.e., δS = 0, we define the Lagrangian to be L ≡ T − V , and derive
a constraint equation called the Euler-Lagrange equation which describes the path of the system:

d

dt

∂L
∂q̇j

=
∂L
qj
. (3)

Euler-Lagrange with a parametric Lagrangian. Physicists traditionally write down an analytical
expression for L and then symbolically expand the Euler-Lagrange equation into a system of dif-
ferential equations. However, since L is now a black box, we must resign ourselves to the fact that
there can be no analytical expansion of the Euler-Lagrange equation. Fortunately, we can still derive
a numerical expression for the dynamics of the system. We begin by rewriting the Euler-Lagrange
equation in vectorized form as

d

dt
∇q̇L = ∇qL (4)

where (∇q̇)i ≡
∂
∂q̇i

. Then we can use the chain rule to expand the time derivative d
dt through the

gradient of the Lagrangian, giving us two new terms, one with a q̈ and another with a q̇:

(∇q̇∇>q̇ L)q̈ + (∇q∇>q̇ L)q̇ = ∇qL. (5)

Here, these products of ∇ operators are matrices, e.g., (∇q∇>q̇ L)ij = ∂2L
∂qj∂q̇i

. Now we can use a
matrix inverse to solve for q̈:

q̈ = (∇q̇∇>q̇ L)−1[∇qL − (∇q∇>q̇ L)q̇]. (6)

For a given set of coordinates xt = (qt, q̇t), we now have a method for calculating q̈t from a black
box Lagrangian, which we can integrate to find the dynamics of the system. In the same manner as
Greydanus et al. (2019), we can also write a loss function in terms of the discrepancy between ẍLt
and ẍtrue

t .

3 RELATED WORK

Physics priors. A variety of previous works have sought to endow neural networks with physics-
motivated inductive biases. These include work for domain-specific problems in molecular dynamics
(Rupp et al., 2012), quantum mechanics (Schütt et al., 2017), or robotics (Lutter et al., 2019). Other
are more general, such as Interaction Networks (Battaglia et al., 2016), which models physical
interactions as message passing on a graph.

Learning invariant quantities. Recent work by Greydanus et al. (2019) and Toth et al. (2019), built
on previous approaches of endowing neural networks with physical priors by demonstrating how to
learn invariant quantities by approximating a Hamiltonian with a neural network. In this paper, we
follow the same approach as Greydanus et al. (2019), but with the objective of learning a Lagrangian
rather than a Hamiltonian so not to restrict the learned kinetic energy.

DeLaN. A closely related previous work is “Deep Lagrangian Networks”, or DeLaN (Lutter et al.,
2019), in which the authors show how to learn specific types of Lagrangian systems. They assume
that the kinetic energy is an inner product of the velocity: T = q̇TMq̇, where M is a positive definite
matrix. This approach works well for rigid body dynamics, which includes many systems encountered
in robotics. However, many systems do not have this kinetic energy, including, for example, a charged
particle in a magnetic field, and a fast-moving object in special relativity.
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4 METHODS

Solving Euler-Lagrange with JAX. Efficiently implementing equation 6 represents a formidable
technical challenge. In order to train this forward model, we need to compute the inverse Hessian
(∇q̇∇>q̇ L)−1 (we use the pseudoinverse to avoid potential singular matrices) of a neural network and
then perform backpropagation. The matrix inverse scales as O(d3) with the number of coordinates
d. Perhaps surprisingly, though, we can implement this operation in a single line of JAX (Bradbury
et al., 2018) (see Appendix). We publish all of our code on GitHub1.

Training details. For both baseline, HNN, and LNN models, we used a four-layer neural network
model with 500 hidden units, a decaying learning rate starting at 10−3, and a batch size of 32. We
initialize our model using a novel initialization scheme described in appendix C, which was optimized
for LNNs.

Activation functions. Since we take the Hessian of a LNN, the second-order derivative of the
activation function is important. For example, the ReLU nonlinearity is a poor choice because
its second-order derivative is zero. In order to find a better activation function, we performed a
hyperparameter search over ReLU2 (squared), ReLU3, tanh, sigmoid, and softplus activations on the
double pendulum problem. We found that softplus performed best and thus used it for all experiments.

5 EXPERIMENTS

Double pendulum. The first task we considered was a dataset of simulated double pendulum
trajectories. We set the masses and lengths to 1 and learned the instantaneous accelerations over
600,000 random initial conditions. We found that the LNN and the baseline converged to similar
final losses of 7.3 and 7.4 × 10−2, respectively. The more significant difference was in energy
conservation; the LNN almost exactly conserved the true energy over time, whereas the baseline
did not. Averaging over 40 random initial conditions with 100 time steps each, the mean energy
discrepancy between the true total energy and predicted was 8% and 0.4% of the max potential energy
for the baseline and LNN models respectively.
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Figure 2: Results on the double pendulum task. In (a), we see that the LNN and baseline model
perform similarly in modelling the dynamics of the pendulum over short time periods. However, if
we plot out the energy over a very long time period in (b) we can see that the LNN model conserves
the total energy of the system significantly better than the baseline.

Relativistic particle in a uniform potential. The second task was a relativistic particle in a uniform
potential. For a particle with a mass of 1 in a potential g and with c = 1, special relativity gives the
Lagrangian L = ((1− q̇2)−1/2 − 1) + gq. The canonical momenta of this system are q̇(1− q̇2)−3/2,
which means that a Hamiltonian Neural Network will fail if given simple observables like q̇ and q.
The DeLaN model will also struggle since it assumes that T is second order in q̇. To verify these

1https://github.com/MilesCranmer/lagrangian_nn_public
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predictions, we trained HNN and LNN models on systems with random initial conditions and values
of g. Figure 3 shows that the HNN fails without canonical coordinates whereas the LNN can work
without this extra a priori knowledge, and learns the system as accurately as an HNN trained on
canonical coordinates.

(a) HNN, arbitrary coords. (b) HNN, canonical coords. (c) LNN, arbitrary coords.

Figure 3: Results on the relativistic particle task. In (a) an HNN model fails to learn dynamics from
non-canonical coordinates. In (b) the HNN succeeds when given canonical coordinates. Finally in (c)
the LNN learns accurate dynamics even from non-canonical coordinates.

Wave equation with Lagrangian Graph Networks. Equation (6) is applicable to many different
types of systems, including those with disconnected coordinates such as graph-like and grid-like
systems. To model this, we now learn a Lagrangian density which is summed to form the full
Lagrangian. This is similar to the Hamiltonian Graph Network of Sanchez-Gonzalez et al. (2019), or
more specifically, the Flattened Hamiltonian Graph Network of Cranmer et al. (2020). For simplicity,
we focus on 1D grids with locally-dependent dynamics (i.e., nodes are connected to their two adjacent
nodes).

A continuous material can be described in terms of a quantity φi, such as the displacement of a guitar
string, at each gridpoint xi. One way to model this type of system is to treat the quantities on adjacent
gridpoints as independent coordinates, and sum the regular LNN equation over all connected groups
of coordinates. For n gridpoints, the total Lagrangian is then:

L =
∑
i=1:n

Li, for Li = Ldensity

(
{φj , φ̇j}j∈Ii

)
(7)

where Ii = {i, . . .} is the set of indices connected to i. For a 1D grid where only the adjacent
gridpoints affect the dynamics of the center gridpoint, this is {i, i− 1, i+ 1}. With the adjacency
matrix set, we can then write down the forward model for φ̈i:

φ̈ =
(
∇φ̇∇

>
φ̇
L
)−1 (

∇φL −
(
∇φ∇>φ̇L

)
φ̇
)

(8)

where, e.g., ∇φ ≡ { ∂
∂φ1

, ∂
∂φ2

, . . . ∂
∂φn
}. Note that since the Hessian in eq. (8) is sparse, and one can

invert a tridiagonal matrix in linear time, one can generally not worry about computational scaling of
this inverse for large graphs.

We can think of this as a regular LNN, where the coordinates are all quantities at the current and
adjacent grid points. For a different connectivity, such as a graph network, or for higher-order spatial
derivatives, one would select Ii based on the adjacency matrix for the graph. This model is a type of
Graph Neural Network. The Lagrangian density itself, Ldensity, we model as an MLP. Since we write
our models in JAX, we can easily vectorize this forward model over the grid.

We consider the 1D wave equation, with φ representing the wave displacement: φ(x, t). For wave
speed c = 1, the equation describing its dynamics can be written as: φ̈ = ∂2φ

∂x2 . The Lagrangian for

this differential equation is: L =
∫ (

φ̇2 − φ2
x

)
dx. For the LNN to learn this, the MLP will need to
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learn to approximate a finite difference operator: Li = 1
2 φ̇

2
i − 1

2

(
φi+1−φi−1

2∆x

)2

for grid spacing ∆x

(or any translation + scaling of this equation). We simulate the wave equation in a box with periodic
boundary conditions, and learn the dynamics with this Lagrangian Graph Network, shown in fig. 4.
The Lagrangian Graph Network models the wave equation accurately and almost exactly conserves
energy integrated across the continuous material.
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Figure 4: Results on the 1D wave equation task, using a Lagrangian Graph Network. Here, the LNN
models the Lagrangian density over three adjacent gridpoints along the wave, and this density is
summed. Here, the waves make approximately four and a half passes across the 50 grid points over
the time plotted.

6 CONCLUSION

We have introduced a new class of neural networks, Lagrangian Neural Networks, which can learn
arbitrary Lagrangians. In contrast to models that learn Hamiltonians, these models do not require
canonical coordinates and thus perform well in situations where canonical momenta are unknown
or difficult to compute. To evaluate our model, we showed that it could effectively conserve total
energy on a complex physical system: the double pendulum. We showed that our model could
learn non-trivial canonical momenta on a task where Hamiltonian learning struggles. Finally, we
demonstrated a graph version of the model and learned the 1D wave equation.
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Appendix

A SOLVING EULER-LAGRANGE WITH JAX

Here we will present a simple JAX implementation of Equation 6. Assume that lagrangian is a
differentiable function that takes three vectors as input and outputs a scalar. Meanwhile, q_t is a
vector of the velocities (q̇) of q (q) and q_tt contains the accelerations (q̈). The vector m represents
non-dynamical parameters.

q_tt = (
jax.numpy.linalg.pinv(jax.hessian(lagrangian, 1)(q, q_t, m)) @ (

jax.grad(lagrangian, 0)(q, q_t, m)
- jax.jacobian(jax.jacobian(lagrangian, 1), 0)(q, q_t, m) @ q_t
)

)

When this is called in a loss function with the LNN parameters as input: loss(params, ...),
one can write jax.grad(loss, 0)(params, ...), to get the gradient.

B EXAMPLE OF LAGRANGIAN FORWARD MODEL

To demonstrate how this may work if one has learned the exact function for L, let us study an example
of a ball falling in a gravity g along the direction q1:

L =
1

2
m
(
q̇2
1 + q̇2

2

)
−mgq1, (9)

where g is the local scalar gravitational field, and m is the mass of the ball. To obtain the dynamics
with our forward model, we calculate the required derivatives which gives us:

∇q̇∇>q̇ L =

(
m 0
0 m

)
, (10)

∇q∇>q̇ L = 0, and (11)

Lq =

(
−mg

0

)
. (12)

Thus, we find (
q̈1

q̈2

)
= (∇q̇∇>q̇ L)−1

[
∇qL − (∇q∇>q̇ L)q̇

]
(13)

=

(
m 0
0 m

)−1 [( −mg
0

)]
(14)

=

(
−g
0

)
(15)

which simply says that the particle accelerates downwards along q1, and moves at constant velocity
along q2.

C INITIALIZATION

Regular optimization techniques such as Kaiming (He et al., 2015) and Xavier (Glorot & Bengio,
2010) initialization are optimized so that in a regular neural network, the gradients of the output
with respect to each parameter will have a mean of zero and standard deviation of one. Since the
unusual optimization objective of a Lagrangian Neural Network is very nonlinear with respect to its
parameters, we found that classical initialization schemes were insufficient.

To find a better initialization scheme, we conducted an empirical optimization of the KL-divergence
of the gradient of each parameter with respect to a univariate Gaussian. We repeated this over a
variety of neural network depths and widths and fit an empirical formula to our results.
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To do this, we ran 2500 optimization steps with different initialization variances on each layer for an
MLP of fixed depth and width. Biases were always initialized to zero. We recorded the optimized
σ values over ∼200 random hyperparameter settings with the number of hidden nodes between 50
and 300 and the number of hidden layers between one and three. Then, we used eureqa (Schmidt &
Lipson, 2009) to find fit an equation using symbolic regression that predicted the optimal initialization
variance as a function of the hyperparameters:

σ =
1√
n

{
2.2 First layer

0.58i Hidden layer i ∈ {1, . . .}
n, Output layer,

(16)

This model was optimized for 2 input coordinates and 2 input coordinate velocities which were
sampled from univariate Gaussians.

During training, the hidden weight matrices had dimensions n× n and each weight matrix
was sampled from N (0, σ2). A 100-node 4-layer model would have weight matrices with
shapes {(4, 100), (100, 100), (100, 100), (100, 1)} and each one had initializations sampled from
{N (0, 0.22),N (0, 0.058),N (0, 0.116),N (0, 10)}, respectively.
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